Degradation mechanism analysis in temperature stress tests on III-V ultra-high concentrator solar cells using a 3D distributed model

نویسندگان

  • P. Espinet
  • Carlos Algora
  • José Ramón González
  • Neftalí Núñez
  • Manuel Vázquez
چکیده

A temperature stress test was carried out on GaAs single-junction solar cells to analyze the degradation suffered when working at ultra-high concentrations. The acceleration of the degradation was realized at two different temperatures: 130 °C and 150 °C. In both cases, the degradation trend was the same, and only gradual failures were observed. A fit of the dark l-V curve at 25 °C with a 3D distributed model before and after the test was done. The fit with the 3D distributed model revealed degradation at the perimeter because the recombination current in the depletion region of the perimeter increased by about fourfold after the temperature stress test. Therefore, this test did not cause any morphological change in the devices, and although the devices were isolated with silicone, the perimeter region was revealed as the most fragile component of the solar cell. Consequently, the current flowing beneath the busbar favors the progression of defects in the device in the perimeter region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability evaluation of III-V Concentrator solar cells

Concentrator solar cells have been proposed as an interesting way of reducing the cost of photovoltaic electricity. However, in order to compete with conventional solar modules it is necessary not only to reduce costs but also to evaluate and increase the present reliability. Concentrator solar cells work at higher temperature, solar radiation and current stress than conventional solar cells an...

متن کامل

Reliability of III-V concentrator solar cells

III-V concentrator solar cells are starting to be commercialized. However, no complete studies about their reliability have been carried out. A review about both the accelerated ageing tests and real time tests developed till now is presented. A proposal about the required tests is also done. In this stage, the tests show that III-V concentrator cells are robust devices with MTTFs well over the...

متن کامل

Instrumentation for accelerated life tests of concentrator solar cells.

Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluat...

متن کامل

Novel accelerated testing method for III-V concentrator solar cells

Accelerated testing is a necessary tool in order to demonstrate the reliability of concentration photovoltaic solar cells, devices which is expected to be working not less than 25 years. Many problems arise when implementing high temperature accelerated testing in this kind of solar cells, because the high light irradiation level, at which they work, is very difficult to achieve inside a climat...

متن کامل

III–V multijunction solar cells for concentrating photovoltaics

Concerns about the changing environment and fossil fuel depletion have prompted much controversy and scrutiny. One way to address these issues is to use concentrating photovoltaics (CPV) as an alternate source for energy production. Multijunction solar cells built from III–V semiconductors are being evaluated globally in CPV systems designed to supplement electricity generation for utility comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2010